
A Scalable P2P Platform
for the Knowledge Grid

Hai Zhuge, Senior Member, IEEE, Xiaoping Sun, Jie Liu, Erlin Yao, and Xue Chen

Abstract—The Knowledge Grid needs to operate with a scalable platform to provide large-scale intelligent services. A key function of

such a platform is to efficiently support various complex queries in a dynamic large-scale network environment. This paper proposes a

platform to support index-based path queries by incorporating a semantic overlay with an underlying structured P2P network that

provides object location and management services. Various distributed indexing structures can be dynamically formed by publishing

semantic objects as indexing nodes. Queries are forwarded along the chains of semantic object pointers to search for objects. We

investigate the deployment of a scalable distributed trie index for broadcast queries on key strings, propose a decentralized load

balancing method for solving the problem of uneven load distribution incurred by heterogeneity of loads and node capacities and by the

distributed trie index, and give an approach for improving the availability of the semantic overlay and its trie index. Experiments

demonstrate the scalability of the proposed platform.

Index Terms—Peer-to-peer, semantic overlay, knowledge grid, path query, distributed trie index, load balancing, replication.

�

1 INTRODUCTION

IMAGINE (Integrated Multidisciplinary Autonomous Global
Innovation Networking Environment) is a scalable

Knowledge Grid environment for effectively sharing and
managing semantic-rich data and knowledge for geogra-
phically dispersed cooperative scientific research [39], [41].
The scalability, availability, and semantic-based operations
are three major challenges of implementing the environ-
ment. Building a semantic overlay on a P2P network is a way
to obtain both the semantic-based operations and scalability,
but this encounters the following three main issues:

1. Provide architectural extensibility for different types
of complex queries.

2. Obtain scaling performance of queries.
3. Improve the utilization and the availability of the

semantic overlay.

Approaching above targets cause conflicts in many
aspects of dynamic and large-scale networks. So, we need
to consider a reasonable trade-off so that an acceptable
scalability of the whole system can be achieved, rather than
in a certain aspect.

The initial studies of P2P networks mainly focus on
efficient resources locating in dynamic and large-scale
environments. Unstructured P2P networks adopt flooding
or random walk methods on randomly connected networks
(e.g., [24]). To solve the scaling problem of flooding search,
DHT (Distributed Hash Table) is used to build structured
overlays of various topologies (e.g., [7], [21], and [37]),
where each node is responsible for a range of IDs allocated
by DHT mechanisms, and messages are routed along
deterministic paths to the target nodes. Most of those

P2P systems are limited to data or file sharing services.
Since DHT overlays encounter difficulties in supporting
complex queries, many specific P2P overlay topologies and
routing methods are proposed to support particular types
of query (e.g., [1], [4], and [9]). There still lacks open and
synthetic architectural solutions for applications with
various types of query.

This paper presents IMAGINE-P2P, a scalable platform
that supports path queries (queries are forwarded along
paths of an index to find the matched keys) by publishing
nodes of an index on a structured P2P overlay network. The
platform has an object overlay that uses the Chord DHT
overlay to manage objects. Above the object overlay is a
semantic overlay where objects are published with semantic
relations of neighboring nodes of an index to support path
queries. The platform deploys a distributed trie index on
the semantic overlay to support wildcard and broadcast
queries on key strings. To scale the trie index in the
distributed environment, we design a compressed pruned
trie that can avoid moving existing keys when inserting
new keys. It can also reduce the average search hops. The
trie index has a short search path that is independent of the
network size and the number of keys, which make it
scalable in dynamic environments. To improve the system
utilization, we adopt a decentralized load-balancing meth-
od that does not rely on any global load information.
Additionally, to improve the index availability, a replication
method is used on the semantic overlay and on the
distributed trie index. The scalability of the platform is
verified by experiments.

2 RELATED WORK

Early P2P systems such as Napster (www.napster.com)
used centralized directory servers for resource discovery.
The second-generation P2P systems like Gnutella
(www.gnutella.com) adopt flooding search methods in
unstructured overlays. DHT overlays aim at providing
scalable lookup functions on structured P2P networks (e.g.,
[27], [30], [37]). Each node maintains Oðlog NÞ or Oð1Þ
neighbor nodes, and the lookup procedure can locate

IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005 1721

. The authors are with the China Knowledge Grid Research Group, Key Lab
of Intelligent Information Processing, Institute of Computing Technology,
Chinese Academy of Sciences, 100080, PO Box 2704-28, Beijing, China.
E-mail: {zhuge, sunxp, lj, alin.yao, chenxue}@kg.ict.ac.cn.

Manuscript received 5 Apr. 2005; accepted 6 June 2005; published online
19 Oct. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tkde@computer.org, and reference IEEECS Log Number TKDE-0132-0405.

1041-4347/05/$20.00 � 2005 IEEE Published by the IEEE Computer Society

remote objects in Oðlog NÞ hops [3]. Some distributed data
sharing/storage systems are built on DHT overlays (e.g.,
[7], [21], and [27]). Hybrid P2P systems use supernodes to
balance search efficiency, robustness, and safety in large-
scale networks (e.g., [36]). High-level architectures and
applications on P2P networks are attracting more and more
attention. JXTA aims at providing a P2P platform with
standardized resource lookup functions and communica-
tion protocols [22].

To improve the efficiency and availability of P2P systems,
much work has been done on load-balancing and replica-
tion methods. In [24], a replication method is used to
improve search efficiency on an unstructured P2P network.
In [12], a decentralized information monitoring system is
built on a DHT overlay, and a relaxed addressing schema is
implemented to efficiently deal with the heterogeneity of
the nodes. In [26], a dynamic load-balancing method is used
to transfer data from highly loaded nodes to lightly loaded
nodes based on global load distribution information. It is
further reduced to a centralized method on DHT overlay
networks in [13]. In [10], an online load-balancing method is
proposed to balance the storage of range-partitioned data
by adjusting ranges among neighboring nodes based on
local neighboring load information as well as global load
information that can be obtained through a skip graph
structure. Publishing functions and topology features can
be leveraged to manage copies (e.g., [7], [12], and [37]). In
[21] and [27], erasure code methods are used to create
copies and maintain consistency of replica. In these
methods, copy placement depends on publishing functions
and topologies of their overlay networks.

Many P2P systems adopt various indexing schemas to
improve search efficiency and to support more complex
queries. In [5], a route index is built on an unstructured
P2P overlay to facilitate queries. The index is created and
maintained based on data from neighbor nodes. In [35],
local indices are built to help selecting the most promising
neighbor to forward a query, thus improving search
efficiency. In [1], [9], and [19], overlay topologies are
manipulated to support specific types of queries. Building
an overlay network with a specific indexing topology can
efficiently support certain types of queries such as range
query. However, it is difficult to adapt such an indexing
topology to other kinds of queries. In [11], [17], and [28],
specific indexing services are deployed on P2P overlays.
These systems rely on specific overlays and indexing
topologies, thus, they still cannot be extended to support
different query requirements. In [14], a key string is
decomposed into multiple subkeys to support complex
queries on existing DHT networks. In a certain sense, it is
similar to the trie index with the granularity of subkeys
larger than that of the trie index and search is based on a
multicast method. Litwin et al. [2] introduces a scalable
distributed data structure (SDDS) LH� that uses hash
function to allocate keys among distributed servers in a
stably connected network. RP� deploys a Bþ-tree index in a
local area network where tree indexes are replicated, and
each physical node handles a range of keys [23]. It uses a
broadcasting method to process data operations such as
inserting or deleting keys. B-tree-based distributed indexes
can efficiently balance indexing node. These indexes do not
consider heterogeneity of data object load and physical
node capacity. Kröll and Widmayer [20] analyze the
scalability of distributed random tree (DRT) index in
dynamic environment. In a DRT, replicas of subtrees are
used to relieve bottleneck of entry nodes and a lazy update

method is used to maintain replications. In [6], a distributed
Bþ-tree index is built on a ring-like P2P overlay where each
peer maintains a relatively independent sub-Bþ-tree index.
A stabilization process is used to maintain consistency
among local sub-Bþ-tree indexes. In a dynamic and large-
scale environment, such a stabilization process is difficult to
maintain and optimize. P-Grid uses a distributed binary
prefix tree to build a structured P2P overlay [1]. Although
the randomized exchange method can form a balanced
binary tree, P-Grid needs to solve skewed data distribution.
Ganesan et al. [10] present a P2P network that supports
range queries by arranging peers on a ring network with
ordered data partitions allocated for peers. And, a skip
graph is used to efficiently locate peers for a range of data.
Physical nodes and data objects should have comparable
names or IDs when using skip graph to route queries,
which limit the key types of data objects on a P2P overlay.
In DHT overlays, two ID spaces are unified by hash
functions and, thus, any types of keys can be applied.

Some overlay networks are built directly on the relation-
ships among physical nodes or cluster semantically close
data among those neighboring physical nodes (e.g., [4], [31],
and [38]). Semantic proximity of nodes or data objects on an
overlay network can help improve search efficiency and
reduce network load. However, clustering physical nodes
or data objects by a certain type of semantic proximity
requires the adjustment of the topology or the location
mapping of objects.

3 DESIGN RATIONALE

Many current DHT-based P2P overlays use ID comparison
to determine message routing based on local routing
indexes. Our analysis shows that route indexes of
N physical nodes on a comparison-based DHT overlay
should connect node IDs to form a linear ordered ID space,
which features the lower bound of OðN log2 NÞ compar-
isons in construction (shown in the Appendix which can be
found on the Computer Society Digital Library at http://
www.computer.org/tkde/archives.htm). Thus, the deter-
ministic mapping between data objects and physical nodes
organizes the IDs of data objects in a linear-ordered space
on the network. In comparison-based DHT overlays such as
Chord [30], Tapestry [37], and PAST [27], one comparison
denotes one hop of routing a message from one node to
another so as to build route indexes by numerically
comparing IDs. Although Tapestry-like overlays do not
explicitly build a linear ordered ID space, the route indexes
inherently follow the same feature of a linear ordered ID
space for message routing because IDs are digitally
compared. Many construction and maintenance processes
take OðN2Þ comparisons since they are the same as an insert
sorting process. For example, in a Chord overlay, inserting a
node will traverse the whole ID space to find its right
position. Although finger tables can help locate the position
at a faster speed, a stabilization process traversing the
whole network is necessary to adjust finger tables after
inserting new nodes.

On a linear ordered ID space formed by IDs of physical
nodes, searching an ID can achieve Oðlogk NÞ hops by
adding each node ðk� 1Þ logk N indices on the IDs space.
Chord uses finger tables to form a log2 N-ary indexing tree
for each node. Tapestry also uses tree-like index to facilitate
search. Some P2P overlays achieve Oðlogk NÞ lookup hops
with Oðlogk NÞ neighbors on networks with specific
topologies such as de Bruijin graph [16] and butterfly

1722 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

graph [34]. Those routing methods are not based on ID
comparison (many of them use bits shift) and impose strong
limits to the node number and the topology. The compar-
ison-based structured P2P networks are preferred in
dynamic environments due to their simplicity and robust-
ness. Among them, the ring-like overlay is the most direct
and easy one to build and maintain because its topology
immediately reflects the inherent property of routing
indexes of comparison-based DHT overlays. Chord overlay
is such a kind of DHT overlay that has a ring topology with
proved correctness of stabilization [30]. This is why we
select it as the underlying overlay.

Path queries, such as exact queries, wild-card queries, or
range queries, can be forwarded along paths in tree-like
route indexes on a structured P2P overlay. However, those
indexes are based on hashed IDs but not on data values.
Thus, only queries on IDs can be facilitated. One can devise
an indexing schema to enable path queries on data values
by using data values instead of their hashed IDs to build
route tables of physical nodes. There should be a determi-
nistic mapping between data values and node physical
addresses (e.g., [10] and [15]). However, different types of
queries may require different index topologies. To incorpo-
rate such a heterogeneity into our design, we abstract an
index as a directed labeled graph where vertexes indicate
indexing nodes and directed edges denote semantic
relations between two neighboring indexing nodes. We
publish the directed labeled graph on the P2P overlay to
form a distributed index that can effectively and efficiently
support path queries. This is inevitably at the cost of search
hops, messages, and storage. Our system provides methods
for scaling the index with the change of the network size
and key number by restraining increases in search hops,
storage, and message cost.

Improving system utilization is a decisive factor in
scaling the performance of the platform. On structured
P2P networks, DHT functions do not consider the hetero-
geneity of data object load and capacities of physical nodes.
Building a distributed index can generate extra load on the
object overlay. Moreover, a skewed data distribution on
indexing imposes heavy load on a few indexing node. This
case is more serious in an index with fewer internal
indexing nodes. So, we adopt a decentralized load-
balancing method that directly acts on data objects to
achieve a high utilization of physical nodes by incorporat-
ing both data object load and node capacity distributions.

The path availability of an index published on the
semantic overlay is crucial for path queries. In a dynamic
environment, the underlying object overlay network is not
always reliable. We apply a replication method to the
semantic overlay to improve the availability of semantic
objects. Path information is stored on semantic objects as
replica to improve the availability of index paths.

4 THE ARCHITECTURE OF IMAGINE-P2P

4.1 Overview

The scalability of a platform lies in many folds. On
architecture, it indicates how well a platform can support
the growth of function and service components. Providing
standard interfaces and isolating logical services from
physical platform are two approaches to scale out an
architecture. In an IMAGINE-P2P platform, the object
overlay is the underlying infrastructure that provides
standard interfaces for accessing the physical P2P network.
Upon it, each layer encapsulates specific services that can be
used by its upper-level services (Fig. 1a). In the object
overlay, an object is the entity that encapsulates both data
and functions to perform certain services. IMAGINE-P2P
implements the basic object that supports Chord DHT
lookup functions, event-driven message processing, and net
thread management (Fig. 1b). Applications can implement
specific data and computing services by extending func-
tions of the basic objects. The namespace defines the
accessible domain of objects identified by their IDs and
the namespace ID. Net threads are used to support
coordination and consistency management of objects.

Two types of net threads, weak and strong, can run on
the object overlay. In a weak net thread wntiðo1; o2; . . . ; onÞ,
each object can be concurrently involved in many threads of
either type. In a strong net thread sntiðo1; o2; . . . ; onÞ, an
object cannot be invoked by any other strong thread until it
is released and object oi can be run only after oi�1 finishes.
To simplify the consistency maintenance, two phases are
used to start a strong net thread from its initial object o1.
Before it starts running, o1 sends the object list o2; . . . ; on to
o2. If o2 grants the access, it will pass the list to o3, etc., until
to on. Only when on grants the access, can the net thread
start running. If any object denies the access, the net thread
aborts. Exclusively continued use of an object by a strong
net thread can cause deadlocks. We use an edge-chasing
algorithm to detect deadlock [29]. To recover from a

ZHUGE ET AL.: A SCALABLE P2P PLATFORM FOR THE KNOWLEDGE GRID 1723

Fig. 1. Architecture of IMAGINE-P2P. (a) Layered architecture of IMAGINE-P2P and (b) object and net thread structures.

deadlock, only one thread is granted the access to the object
by thread priorities, lengths of net threads, and requesting
object IDs. Complex concurrency control can be implemen-
ted based on weak net threads.

4.2 The Semantic Overlay

Semantic objects are published on the object overlay to

package indexing nodes of an index. A semantic object is a
triple SO ¼ ða;R; bÞ, where R is the directed semantic

relation between neighboring indexing nodes a and b. The

semantic overlay consists of many such relation graphs

formed by semantic objects. A semantic path

spða1R1a2R2 . . . an�1Rn�1anÞ

on the semantic overlay follows a series of semantic

relations Riði ¼ 1; 2; . . . ; n� 1Þ from an indexing node a1
to an. Path queries can be forwarded along a semantic path

to get the answer. Fig. 2 shows an index example on the

semantic overlay. A path query on key A sending from

node n1 can reach node n2 by following SO2 and SO1. It can

also directly follow SO3 to find the key. Different indexing

schemas can coexist on the semantic overlay by using

different namespaces. Tree-like indexing data structures

can be deployed on the semantic overlay as graphs.
To publish a semantic object SO ¼ ða;R; bÞ onto the

object overlay, either a or b, or both can be used as the keys
by the DHT function. Thus, it can have two copies in the
overlay and the consistency between copies should be
maintained by applications. A semantic path

spða1R1a2R2 . . . an�1Rn�1anÞ

is decomposed into n� 1 semantic objects, SO1ða1; R1; a2Þ,
SO2ða2; R2; a3Þ; . . . , and SOn�1ðan�1; Rn�1; anÞ. If it is to be
uniquely represented by semantic objects, path keys are

used to decompose spða1R1a2R2 . . . an�1Rn�1anÞ into

SO1ða1; R1; a2Þ, SO2ða1a2; R2; a3Þ; . . . , and

SOn�1ða1a2 . . . an�1; Rn�1; anÞ:
A path key contains a path from a starting indexing node to
an ending indexing node. Removing a semantic path carries
out in the same way as it is published. A strong net thread is
responsible for the removal.

To locate a single object SOða;R; bÞ, either a or b can be

used as the key by the DHT lookup function on the object

overlay. A path query q ¼ a1R1a2R2 . . . an�1Rn�1an looks for
a set of semantic objects of a semantic path

spða1R1a2R2 . . . an�1Rn�1anÞ:

It is decomposed to n� 1 subqueries that are sequentially
processed, q1 ¼ a1R1a2 . . . an, q2 ¼ a1a2R2a3 . . . an, and

qn�1 ¼ a1a2a3 . . .Rn�1an:

q1 is first sent to the physical node that holds SO1ða1; R1; a2Þ.
If q1 is matched, q2 is forwarded to the next physical node
for SO2ða2; R2; a3Þ or SO2ða1a2; R2; a3Þ when using path
keys, and so on until the last subquery qn�1 is matched.
Accessing the first semantic object SO1ða1; R1; a2Þ requires
Oðlog2 NÞ hops through the DHT function of the object
overlay (N is the number of physical nodes). The rest hops
can follow the cached addresses of pointers of semantic
objects. Only if a cached address fails, is the DHT lookup
function used to determine the new address of the object.
Thus, when all the pointers of semantic objects are correct,
the total hops can be Oðlog2 N þ LÞ, where L is the length of
a semantic path that a query follows. In the worst case
where all pointers are lost, there will be OðL � log2 NÞ hops.
Although the total length of hops is longer than OðLÞ and
Oðlog2 NÞ, we trade it against the extensibility and
flexibility of the architecture to support various complex
path queries.

Table 1 lists a set of basic queries on the semantic
overlay. x represents any key of indexing node, a and b are
specific keys of indexing nodes, � indicates any relation, R�

denotes a semantic path formed by a relation R, aR�

represents all the possible semantic paths starting from a
and following a relation R, TTL(Time-to-Live) is a pre-
defined search hop count, the depth is the length from the
starting node along a semantic path, and �a is a delimiter
that excludes a during a search. Basic queries can be
combined to support more complex queries.

4.3 Distributed Trie Index on the Semantic Overlay

As the first step, we deploy a trie index on the semantic
overlay. A trie index is a tree-like index that supports path
queries such as wildcard queries and range queries on key
strings. In a trie index, a key string is a permutation of a set
of m attributes ða1; a2; . . . ; amÞ that take on values from a
finite attribute set (such as English character set). Two keys
that have the same k initial attributes in the same order
share the k prefix. A trie can be viewed as an m-ary tree
where keys are arranged on leaf nodes. Keys with the same

1724 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Fig. 2. Semantic objects of a distributed index on the semantic overlay. (a) Three semantic objects using a as the key to publish themselves. (b) A

distributed idex on the semantic overlay formed by three semantic objects that are hosted by two physical nodes published by DHT functions.

k prefix share the same path of k indexing nodes from the
root to leaves [18]. Searching a key string on a trie index
starts from the root and follows the attributes that meet the
query along a trie path until to a leaf node. A trie path
tpða1a2 . . . ameÞ is a unique path from the root trie node to an
internal trie node am, where e is an ending tag of a trie path.
Each key K ¼ a1a2 . . . am . . . an has a unique trie path
tpða1a2 . . . ameÞ ðm � nÞ.

Publishing a key K ¼ a1a2 . . . an is a searching/publish-
ing process of the trie path tpða1a2 . . . ameÞ ðm � nÞ of K:
Searching along the trie path of the key, if there is no such
trie path, publish it; if there exists a tp1ða1a2 . . . aieÞ
ð0 < i < mÞ, publish the rest part tp2ðaiaiþ1 . . . ameÞ of the
path; and, finally, the key is attached to the ending indexing
node am. We use semantic objects to package two connected
indexing nodes of a trie path. If a trie node aiþ1

is a direct child of the trie node ai on a trie path
tpða1a2 . . . aiaiþ1 . . . ameÞ of a trie index, there exits a relation
aiSaiþ1. Using the path key mentioned in Section 4.2, aiSaiþ1

is represented by a semantic object SOða1a2 . . . ai; S; aiþ1Þ.
Publishing a trie path tpða1a2 . . . ameÞ is the same as

publishing a semantic path spða1Sa2S . . .SamSeÞ, i.e.,

decomposing it into m semantic objects, SO1ða1; S; a2Þ,
SO2ða1a2; S; a3Þ; . . . , SOm�1ða1a2 . . . am�1; S; amÞ, and

SOmða1a2 . . . am�1am; S; eÞ:

The key K is attached to the last semantic object SOm. For
example, to publish a key K ¼ back in Fig. 3a, a trie path

b ! a ! c ! k of K is decomposed to four semantic objects
SO1ðb; S; aÞ, SO2ðba; S; cÞ, SO3ðbac; S; kÞ, and SO4ðback; S; eÞ.
Basic queries on the semantic overlay can be applied to the
trie index. A trie index can support broadcast queries by

issuing a query q ¼ a1a2 . . . amS
�. A broadcast query will

follow every possible branch from the indexing node am.

Range queries can be decomposed into a set of broadcast
queries with delimiters to search on a portion of a trie index

that is in charge of the queried range. This paper focuses on

broadcast queries since they consume more messages than
range queries.

There are mainly two types of trie indexes [18]. A full trie
uses all attributes of a key string as the trie path from the root

ZHUGE ET AL.: A SCALABLE P2P PLATFORM FOR THE KNOWLEDGE GRID 1725

TABLE 1
Basic Queries on the Semantic Overlay

Fig. 3. Trie indexes. (a) A full trie, (b) a pruned trie, and (c) a compressed pruned trie.

to the leaf node of the key (Fig. 3a). A pruned trie only uses
the attributes common to the prefixes of two or more key
strings to build internal nodes (Fig. 3b). A trie is an efficient
indexing structure if there are many keys with limited key
string length. Search hops on a trie are proportional to the
average depth of the trie (it is also proportional to the
average length of key strings). Other tree-like indexes, for
example, a B-tree, can be published by wrapping range
relations among indexing nodes into semantic objects.
However, inserting or deleting keys on a B-tree index
requires splitting existing indexing nodes and moving keys.
Publishing a full trie index does not require such dynamic
adjustments. But, it has much longer search paths. A pruned
trie has shorter search hops but needs to move existing keys
when inserting new keys. We devise a compressed pruned
trie index to avoid moving existing keys. Such an index can
also reduce the average search hops (Fig. 3c).

To build a compressed pruned trie index, we use a
special semantic object called key object to store key strings
on a pruned trie index. An existing key object does not have
to move when inserting a new key that shares the prefix
with it. A key object is defined as KOða1a2 . . . aj; S;KÞ,
where key K ¼ a1a2 . . . aj . . . an and aj are the leaf trie nodes
of the trie path of K. When publishing the key K ¼
a1a2 . . . aj . . . an from the node holding the semantic object
SO1ða1; S; eÞ:

1. If there is no SOða1; S; eÞ or SOða1; S; a2Þ, SOða1; S; eÞ
is published and the key K is published by
KOða1; S;KÞ.

2. If there is SOða1; S; eÞ but no KOða1; S;K1Þ, where
K1 ¼ a1b2b3 . . . bn ðb2 6¼ a2Þ, the key K is published
by KOða1; S;KÞ.

3. If there are already SOða1; S; eÞ and a KOða1; S;K1Þ
that shares some prefixes with K, where
K1 ¼ a1a2 . . . ajbjþ1 . . . bm, j � 2, and bjþ1 6¼ ajþ1,
SOða1; S; eÞ is changed to SOða1; S; a2Þ and two
objects are published. One is SOða1a2; S; eÞ, the
other is KOða1a2; S;KÞ.

4. If there is already a SOða1; S; a2Þ, forward the key
K along the trie path tpða1a2 . . . ameÞ until to
SOða1a2 . . . am; S; eÞ ðm � nÞ. If there is no such a
KOða1a2a3 . . . am; S;K2Þ that

K2 ¼ a1a2 . . . amamþ1bmþ2 . . . bp;

just publish a KOða1a2a3 . . . am; S;KÞ. Else change
SOða1a2 . . . am; S; eÞ to SOða1a2 . . . am; S; amþ1Þ and
publish objects SOða1a2a3 . . . amamþ1; S; eÞ and
KOða1a2a3 . . . amamþ1; S;KÞ.

In above steps, publishing a SO and a KO with the same
prefix can be combined into one publish. The whole process
does not move or split any existing indexing nodes or keys
but the new keys. When searching on the compressed
pruned trie, a physical node first checks if it has KOs that
matches the query. If there is no matched KOs, then follow
the semantic objects for the next hop on the trie path.

4.4 Optimized Search on the Distributed Trie Index

We further optimize the search procedure to reduce search
hops on physical nodes by skipping unnecessary accesses to
the same physical node for one query. When a physical node
holding SO1ða1a2 . . . aj; S; ajþ1Þ matches a subquery qj ¼
a1a2 . . . ajSajþ1 of query q ¼ a1a2 . . . anð1 � j < n� 1Þ, it
checks all objects in its local storage to determine the hop of

the next subquery. If there is a SO2ða1a2 . . . ah; S; ahþ1Þðh >
jþ 1Þ and ah is the closest attribute to anðh � nÞ, the
subquery qh ¼ a1a2 . . . ahþ1Sahþ2 is forwarded directly to
thephysical node that holdsSO3ða1a2 . . . ahþ1; S; ahþ2Þ, rather
than forwarding the subquery qjþ1 ¼ a1a2 . . . ajþ1Sajþ2 to
SO4ða1a2 . . . ajþ1; S; ajþ2Þ. In Fig. 4a, the query q for a key
“abcdef” starting from the physical node Awill visit physical
node B for two times, while in Fig. 4b, the query skips the
physical nodeB since it finds the shortcut to physical nodeC.
The optimized search can apply to the full trie index and the
pruned trie.

In a compressed pruned trie index, a key object is
attached to an internal node of a trie path. Then, internal
nodes cannot be skipped. When issuing a subquery,
already matched parts of the original query are marked
to avoid subsequently repeated accesses to a physical
node. Given a subquery q1 ¼ a1Sa2 . . . an, we assume that
physical node n1 holds SO1ða1; S; a2Þ. If there is also a
SO2ða1a2 . . . aj; S; ajþ1Þ ðj � 2Þ at n1, then n1 refines the
query q1 to the subquery q2 ¼ ða1a2Sa3 . . .� ajajþ1 . . . anÞ
by marking aj as a delimiter. After all the local semantic
objects and key objects are checked in n1, the refined
query q2 is sent to the next physical node n2 that is
responsible for the semantic object SOða1a2; S; a3Þ. When
n2 receives q2, it will first use the local index to refine the
q2 to q3 ¼ ða1a2a3Sa4 . . .� aj . . .

� am . . . anÞ. If a4 is a
delimiter, then it is skipped by refining the q2 to qh ¼
ða1a2a3 . . . ahSahþ1 . . .

� ajajþ1 . . .
� am . . . anÞ until ahþ1 is not

a delimiter. Then, qh is sent to the next physical node that
has SOða1a2a3 . . . ah; S; ahþ1Þ. Figs. 4c and 4d show the
example of such a refined query on a compressed pruned
trie. Multiple accesses to the physical node A can be
avoided.

Locating a single key using a distributed trie takes
Oðlog2 N þ LÞ hops on physical nodes, where N is the
physical node number and L is the hops on the trie path
leading to that key. Even using optimized search method, it
still needs more hops than directly using DHT function to
publish and locate a key in Oðlog2 NÞ hops. However, a
broadcast query q ¼ a1a2 . . . ajS

� can achieve a high search
speed with moderate message cost since queries follow trie
paths directly to the physical nodes that hold those matched
keys. The speed is the max search depth on a trie index,
plus Oðlog2 NÞ hops to locate the starting trie node. The
message cost is the number of internal trie nodes that cover
the queried keys. If there is no such an index, the only way
to find those matched keys is to browse all the physical
nodes using broadcasting method on the network. If
sequentially forward a broadcast query in two directions,
it will take N=2 hops and N � 1 messages. Using finger
tables to broadcast queries can achieve a Oðlog2 NÞ broad-
cast depth with OðN log2 NÞ messages. In [8], an optimized
broadcasting method can achieve Oðlog2 NÞ broadcast
depth with N � 1 messages. In this case, the query hops
and message cost depend on the number of network nodes
and even when the number of returned keys is small, a
query has to traverse the entire network, generating large
amounts of messages. Generally, search hops and message
cost are two contradictory factors. Using the optimized
method can reduce the total message number among
physical nodes. When a subquery of a broadcast query
visits a physical node, it checks the local storage to find all
internal trie nodes that match the broadcast query and issue

1726 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

subqueries along those internal trie nodes. Then, subqueries
latterly arriving at this physical node will be discarded and
the total messages can be reduced.

5 PERFORMANCE AND AVAILABILITY IMPROVEMENT

5.1 Decentralized Load Balancing

To improve the system utilization, we use a decentralized
load-balancing method similar to the decentralized load-
balancing methods. Decentralized load-balancing methods,
such as diffusion and dimension exchange, have been
extensively investigated for massively parallel computer
architectures with fixed network topologies (e.g., [25], [32],
and [33]). In decentralized load-balancing methods, load
migration takes place in neighboring nodes based on local
load distribution. We take the finger table of a Chord node
on the object overlay as its neighbors. Load migration is
controlled to avoid overloading neighbors. Objects are
moved to neighbor nodes one by one when balancing
conditions are met.

In the object overlay ring, ni denotes a physical node,
and niþ1 is its nearest successor. N is the total number of the
nodes. The last node nN takes n1 as its nearest successor. Let
Lt
i be the workload of the node ni at time t, and Ci be the

capacity of the node ni. Let W ¼ fw1; w2; . . . ; wmg be
m objects distributed on the network with wj indicating
the jth object and its workload. Let dti ¼ fwkjwk 2 Wg be the
set of objects on the node ni at time t. Then, Lt

i ¼
P

wl2dti
wl is

the workload of the node ni at time t. We use Si ¼
fniþ20 ; niþ21 ; . . . ; niþ2rg to denote the set of neighbor nodes
of the node ni, where r ¼ log2 N . Let L ¼

Pm
i¼1 wi be the

total workload of objects on the network and C ¼
PN

i¼1 Ci

be the total capacity of nodes on the network. Then, the

ideal target distribution of workload follows such a

distribution that for each node niði ¼ 1; 2; . . . ; NÞ, Lt
i

Ci
¼ L

C .

The target distribution is the same as that used in [26]. In

the load-balancing process, each node should make three

decisions:

1. Which object should be moved. To reduce the turbu-
lence of the workload distribution in the load
balancing, we select a moveable object with the least
workload defined as ws ¼ minfwkjwk 2 dtig.

2. When should the object be moved. If ws 2 dti is the object
at ni to be moved at time t, it is moved when

Lt
i

Ci
>

Lt
j

Cj

and
Lt
i�ws

Ci
� Lt

jþws

Cj
, so that the target node nj is not

loaded more than the source node.
3. Where should the object be moved. The neighbor node nj

with
Lt
j

Cj
¼ min

Lt
k

Ck
jnk 2 Si

n o
is selected as the target

node.

Nodes on the network simultaneously and periodically

collect the load and the capacity information from their

neighbor nodes to evaluate load-balancing conditions. We

use the future reserved load to decide on load migration.

After deciding to move an object, a node first sends a

reservation request to the target node. The target will add

the load from the requestor to its future reservation load

and will inform other nodes of this reservation load rather

than the current real load. Object movement can be

bounded by setting the max move times for objects so that

frequent movement of objects can be avoided.

ZHUGE ET AL.: A SCALABLE P2P PLATFORM FOR THE KNOWLEDGE GRID 1727

Fig. 4. Optimized queries on distributed trie indexes. (a) Queries access node A and B multiple times on the full trie index and the pruned trie index.

(b) Optimized queries on the full trie index and the pruned trie index. (c) Queries access node A multiple times on the compressed pruned trie index.

(d) Optimized queries on the compressed pruned trie index.

5.2 Availability Improvement of the Semantic
Overlay and the Distributed Trie Index

To improve the availability of a semantic object SOða;R; bÞ,
we use key a and key b to publish it twice, i.e., SOða;R; bÞ
and SOðb;�R; aÞ. Each can be easily recovered from the
other. To maintain consistency between copies, a strong net
thread is used to limit an operation to either the primary
object or its copy. The distributed trie index on the semantic
overlay can inherit the replication method from the
semantic overlay. We use path key to further improve the
availability of a trie path.

A path key of a semantic object contains the path
information of the objects published before it on the same
path. A semantic object can be recovered from any latter
published semantic object. The recovery process is carried
along with a query on a trie path. For a path query
q ¼ a1a2 . . . am, the first subquery q1 ¼ a1Sa2 . . . am reaches
the semantic object SO1ða1; S; a2Þ. If SO1 fails, the
subquery q1 is sent to the possible successors with
SO2ða1a2; S; a3Þ and so on until to SOmða1a2 . . . amS; eÞ. If
none of them responds, the query returns an empty result.
If any semantic object receives a query that should have
been matched already, its immediate predecessor can be
presumed lost and an attempt can be made to recover it.
However, when a semantic object with keys is lost, the
semantic objects after it on the trie path cannot determine
what the keys are.

Since each copy of a semantic object can be recovered
from the other, the availability of a semantic object is
measured by

Ps ¼
Xn�m

i¼0

M
i

� �
N �M
n� i

� �

N
n

� � ;

where n ¼ 2, m ¼ 1, and there are M unavailable physical
nodes in the network with N nodes. Under 10 percent
failures of physical nodes, 99.99 percent availability of an
object can be achieved. Assuming that all the semantic
objects of a trie index have the same availability ps � 1, if
the replication method is disabled, the availability of a trie

path with r semantic objects is ptp ¼ prs and ptp � ps. When
using path keys, a semantic object can be recovered by
those published after it on a trie path. Thus, the
availability can be evaluated by

ppk ¼ð1� ð1� psÞr�1Þð1� ð1� psÞr�2Þ . . .
ð1� ð1� psÞr�ðr�1ÞÞ;

obviously ppk > ptp.

6 EXPERIMENT RESULTS

6.1 Distributed Trie Index Evaluation

The efficiency of deploying indexes on the semantic overlay
is determined by the factors including storage cost,
maintenance cost, search hops, system utilization, and
index availability. To evaluate the storage cost and the
average search hops of trie indexes, we concern two
metrics, the number of internal indexing nodes, and the
average search hops on indexes. The number of semantic
objects published by path keys is equal to the number of
internal trie nodes. The average search hops is the average
depth of the trie index. Using optimized search method can
reduce the average search hops since internal trie nodes can
be skipped. To measure the maintenance cost, we evaluate
movements of existing keys when inserting new keys.
System utilization and index availability are tested in the
following sections.

Table 2 compares basic properties of a full trie (F Trie), a
pruned trie (P Trie) and a compressed pruned trie (CP Trie).
B-tree and Bþ-tree are also compared. The average hops of
B-tree and Bþ-tree are referred as the max depth of trees.
We use a set of 13,913 disk file names (indicated as *.*) and a
set of 2,349 PDF file names (*.pdf files use paper titles as
their names) as key strings to be published on indexes.
Among three trie indexes, the compressed trie index has the
least internal nodes and the shortest average search path.
With a different bucket size, the B-tree can have various tree
depth and key movement cost. When the bucket size is set
to 26, the B-tree and the Bþ-tree have the least internal
indexing nodes and the shortest search paths. Although
many keys have to be moved in the B-tree with a large
bucket size, the total cost can be still less than that of the

1728 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

TABLE 2
Index Properties

compressed pruned trie index, even counting in key
movements. If the bucket size is set to 3, the total
construction cost is larger than that of the compressed
pruned trie. Deleting keys in a trie index involves only
indexing nodes on the trie path of the key. However,
deleting keys on a B-tree will take the key movements no
less than the cost of inserting keys when merging indexing
nodes.

Fig. 5 shows the internal nodes and the average search
hops on trie indexes where key strings are randomly
generated with the same distribution. Lengths of key strings
are uniformly distributed within a max length and attributes
are randomly selected froman attribute set including English
characters. When the key string distribution is static, the
average search hops on the pruned trie and the compressed
trie are not much sensitive to the key number, the average
key length, and the size of attribute set.

A broadcast query on trie indexes can achieve an
efficient query hops while incurring limited message cost.
We test the optimized search method on trie indexes to
evaluate the effect on reducing messages for a broadcast
query that returns all the keys on the network. Although
using finger table to broadcast a query on the overlay can
achieve log N hops with N � 1messages, Fig. 6a shows that
the broadcast query for 2,000 keys on the pruned trie and
the compressed pruned trie index has less message cost
than using finger tables on the Chord ring when the
network size increases. When both the key numbers and the
network size increases, the broadcast query can still have
less message costs than broadcasting directly on the overlay
as shown in Fig. 6b. Figs. 6c and 6d show that the optimized
search can greatly reduce messages in the full trie index

when key number increases. However, the effect worsens
when physical node number increases.

Table 3 shows the messages cost of the optimized query
for all the keys on trie indexes when using the PDF file
names as the keys. The average hops and the total messages
of the full trie can be greatly reduced. The effect is not
obvious for the pruned trie and the compressed pruned trie
because they have less internal trie nodes and shorter trie
paths. Using finger tables to broadcast the query on the
Chord overlay with 2,000 nodes can take 11 hops and
2,000 messages. In the compressed trie, it only takes
1,176 messages to return the whole keys and the average
extra hops on trie indexes is less than 5.

6.2 Load-Balancing Evaluation

We now evaluate the effect of the load-balancing method
on improving the system utilization. First, we use
randomly generated data object loads and node capacities
by different distributions to test the load-balancing
method. In the following section, we test the load
balancing with objects of distributed trie indexes. An
event-driven environment is used to simulate the load
balancing in a network with a ring topology. We use the
variance of Li=Ci, var ¼ 1

N�1

PN
i¼1 ðLi

Ci
� L

CÞ
2, to evaluate the

utilization of a network with N nodes, where Li indicates
the current load of node i and Ci is the capacity of node i.
The smaller the variance of Li=Ci, the better the load
balancing. The x-axis indicates the simulation rounds and
the y-axis is the variance of the whole network load
distribution.

First, we set the load of all the data objects to one unit.
The number of objects on each physical node is uniformly

ZHUGE ET AL.: A SCALABLE P2P PLATFORM FOR THE KNOWLEDGE GRID 1729

Fig. 5. Internal trie nodes and average search hops on trie indexes with randomly generated keys.

distributed. In Fig. 7a, s 1 shows the load-balancing
process when neighbor nodes cover only the successors
of a node. As shown by bi 1, balanced load can also be
achieved when neighbor nodes cover both predecessors
and successors. However, if the successors and the
predecessors are separately considered when moving
objects in two directions, the loads will not balance as
shown by bi 2 and bi 3. The following experiments use
only one-direction migration.

Fig. 7b shows the effects with four different workload
and node capacity distributions. The node capacities in a 1
and a 2 experiments are uniformly distributed within a
range from 10 to 200 unit loads, and those in a 3 and a 4
exponentially distributed with expectation of 50 unit loads.
In a 2 and d 3, loads of 856 objects are distributed
exponentially with an object load expectation of 10 unit
loads. In a 1 and c 4, object loads are distributed uniformly
in a range from 1 to 15 unit loads. The load balance can be
achieved under different initial load distributions. When
the bound of the object move times is set to 2 (a 4 2 in

Fig. 7c), the convergence is very close to that of a 4 without
an upper bound. In Fig. 7d, node_in shows that, when
50 new nodes randomly join in a network with 200 nodes,
the load-balancing process can be facilitated. node_out
shows that, although the load distribution worsens at first
when nodes leave the network, the load-balancing method
still works but is slowed down. node_in_out shows that the
joining node can counteract load unbalance incurred by
node departures.

When objects are dynamically published in the load-
balancing process, the load inbalance can be restrained. In
Fig. 7e, when the load distribution and the capacity
distribution are the same as those of a 2, dyn_no_lb shows
a sharply increasing variance of load distribution when the
load balancing is disabled and dyn_in_lb shows the
restrained increase under the load-balancing process. This
also demonstrates that the load-balancing method can be
used to publish objects. When an object’s location is
suggested by the DHT lookup, the object will not
immediately be transferred to that location. That location

1730 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Fig. 6. Message cost of a broadcast query using optimized search on trie indexes.

TABLE 3
An Optimized Search on Trie Indexes with 2,349 PDF File Names as Keys

may first be changed by the load-balancing process since

the host node can use the reservation to balance the load. By

limiting the times an object may move in publishing, the

final location will be determined exactly. This process is

similar to the relaxed matching method of PeerCQ that

moves the object only once to its direct neighbor nodes [12].

Finally, we test the load-balancing method in a 2,000-node

network. As shown by large_1 and large_2 in Fig. 7f, similar

convergent process can be achieved under the exponential

load distribution and uniform load distribution, respec-

tively.
Table 4 shows the cost of load balancing to achieve a

balanced distribution. In most cases, when the variance is

reduced by more than 90 percent, the average move times in

the load-balancing process,

avg mov ¼ total move times of all objects

total number of objects
;

is less than 1.6. The total workload of moved objects is

evaluated by moved load ¼ total moved workload
total workload of objects . Moving an

object one time will incur one more search hop. When

moving each object 1.6 times in a 3, it is about an 18 percent

increase in the log2 N hops that are required to publish an

object in a network with 200 nodes. When nodes continually

depart, it requires many more movements to become

balanced. In a 4 1, we limit the object movements to 1

and the total object movements are less, but with poorer

final load distribution. In a 4 2, where object movement is

limited to two times, the load can be well balanced with

fewer object movements than a 4. In the large network with

2,000 nodes, the average objects movement is still bounded.

ZHUGE ET AL.: A SCALABLE P2P PLATFORM FOR THE KNOWLEDGE GRID 1731

Fig. 7. Convergence process of the load balancing.

Chord uses virtual servers to improve the load balance,
where each physical node holds more than one virtual
server and data objects are mapped by DHT function to
virtual servers instead of physical nodes [30]. They
proposed that log N virtual servers per physical node can
be optimal with high probability when considering only the
number of keys. Fig. 8 depicts the load distribution under
different number of virtual servers per node when con-
sidering object load and physical node capacity. Under the
same workload of virtual servers, i.e., the object load
distribution on virtual servers is fixed, it is difficult to
determine the optimal point when setting different num-
bers of virtual servers for physical nodes. Our load-
balancing method can reduce the variance by more than
90 percent in any workload distribution.

Table 5 shows the convergent speed of the load-
balancing process with different network size under the
same load and capacity distribution. The simulation rounds
for reducing the initial variance by 95 percent is not much

sensitive to the network size. So do the average object
movements (avg mv times) and the moved load (mv load).
They mainly depend on the ratio of load and capacity (l / c)
and the initial variance (initial var).

6.3 Load Balancing on the Distributed Trie Index

In this section, we test the load-balancing effect on increase
in search hops of distributed trie indexes. In a network with
200 nodes, we publish 856 data objects with papers’ names
as keys by a full trie index, a pruned trie index, and a
compressed pruned trie index, respectively. The data
objects are stored with the semantic objects that hold the
leaf trie nodes of the keys of those data objects. The load
distribution of object loads and the node capacities are the
same as that of a 4 in Fig. 7b. The load-balancing process
can move all semantic objects or can move only those
semantic objects that currently hold data objects. Using trie
indexes to publish data objects can obviously incur more
serious load unbalance. Fig. 9 shows that the load balancing

1732 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

TABLE 4
Cost of Load Balancing for Reducing the Variance by 90 Percent

Fig. 8. Load distribution with different numbers of virtual servers per node.

TABLE 5
Convergent Speed for Reducing the Variance by 95 Percent

can greatly improve the utilization. f_no_so, p_no_so, and
cp_no_so indicate the load-balancing processes that only
move semantic objects with data objects for the full trie, the
pruned trie, and the compressed pruned trie, respectively.
f_all, p_all, and cp_all are for the load-balancing processes
that move all the semantic objects. Two cases show little
difference because the most semantic objects are of small
storage cost compared with those holding data objects.

Table 6 shows the object movements and the increased
search hops incurred by the load balancing. The average
move times (avg mov in Table 6) of semantic objects are
no more than 2.2 in the most seriously unbalanced
situation. Thus, the extra lookup hops incurred by load
balancing are still controlled. When balancing only
semantic objects that hold data objects, the average search
hops (avg hops) is evaluated by avg hops = avg index hops +
avg mov. avg index hops is the average hops on trie indexes
and avg mov is the average object move times in the load-
balancing process. The result shows that the increased
hops is minor. When balancing all semantic objects, the
average search hops is evaluated by avg hops = (avg index
hops * avg mov) + avg index hops. Balancing all semantic
objects can incur much more extra search hops for the
pruned trie and the compressed trie.

6.4 Query Delays under the Load Balancing

If each extra hop incurred by the load balancing does not
significantly delay a query, the average query latency under
load balancing can be reduced when only considering
storage consumption of objects. For simplicity, one unit
load indicates one storage unit. The time to transfer an
object is equal to the load of the object. Assume that a FIFO
queue is used to cache the queries for objects in each
physical node, then the query’s latency on one physical

node is its waiting time in the queue, namely, the total
processing time of those queries before it. If the sought
object is in the queried physical node, the processing time of
a query is equal to the time for transferring the object to the
requester. If the sought object is moved to a successor by the
load-balancing procedure, the query is forwarded to the
next node with its waiting time increased by a certain
amount of unit load. Then, the total delay of a query on the
network is evaluated by the total process time in all the
nodes that processed the query. Fig. 10 shows the average
latency of queries accessing all the objects at different query
issuing rates. Two query distributions are tested and the
load balancing can reduce the average query latency.

Fig. 11 indicates the percent of the reduced average
query latency by load balancing for four load distributions
tested in Fig. 7b. Queries are issued in a uniform
distribution on data objects. The average object load in
a_1 and a_4 is 7.55 unit loads, and 8.05 in a_2 and a_3. In
general, the higher the initial variance of load distribution,
the lower the reduced latency. As the latency of one hop
increases, the reduced average query latency is worsened.

6.5 Availability of the Distributed Trie Index

Finally, we test the availability of trie indexes published on
the network with 200 nodes and 2,000 keys by generating
one query for each key. The availability is evaluated by the
successful rate of all generated queries. When some
physical nodes are disabled, the proportion of failed queries
depends on the replication strategy. Fig. 12a shows that in a
full trie index, the path key replication is good enough
(f_path_replication) and it is quite close to using both the
path key and semantic object replication (f_so+path_replica-
tion). But, the full trie has poor availability if only taking the
semantic object replication (f_so_replication). Fig. 12b shows

ZHUGE ET AL.: A SCALABLE P2P PLATFORM FOR THE KNOWLEDGE GRID 1733

Fig. 9. Load balancing on distributed trie indexes.

TABLE 6
Cost of Load Balancing for Reducing the Variance by 90 Percent for Distributed Trie Indexes

that, in a pruned trie index, using both path keys and
semantic object replication has similar availability to only
the path key replication or only the semantic object
replication. The availability of the full trie with the
replication is better than that of the pruned trie because
the pruned trie has much shorter path length and there are
fewer copies in path key replication. The pruned trie,
however, has better availability without replication because
it has much shorter search paths, i.e., it is less probably
broken under the same failure distribution.

6.6 Summary of Experiments

The trie index is easier to be constructed and maintained
than the B-tree when frequently inserting/deleting keys,

while the B-tree index with large bucket size can achieve
higher search efficiency. Search hops in the B-tree are
determined by the bucket size and the number of keys.
When deploying the B-tree, the bucket size and key
movement should be carefully designed. In the trie index,
search hops is only sensitive to the key string distribution,
i.e., the distribution of string attributes and key string
lengths. The pruned trie index is even insensitive to the key
string length. The key string distribution is generally
considered much steady in practice compared with the
network size and the key number. Easy maintenance and
steady search hops enable the trie index to scale in a large-
scale and dynamic environment. Although publishing the

1734 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Fig. 10. Queries delays under the load balancing. (a) Queries are uniformly distributed and (b) queries are exponentially distributed.

Fig. 11. Percent of reduced average query latency under different delay of one hop.

Fig. 12. The availability of the distributed trie indexes. (a) A Full trie with 2,000 keys (26 characters, max length is 20), 16,008 internal trie nodes.

Network has 200 nodes. Average hops on the trie is 11.5920. (b) A pruned trie with 2,000 keys (26 characters, max length is 20), 595 internal trie

nodes. Network has 200 nodes. Average hops on the trie is 2.66.

trie index on the semantic overlay increases the whole
query hops on the network, a broadcast query using the
compressed pruned trie can achieve efficient query hops
with a controlled number of messages.

The load-balancing method can relieve uneven load
distribution in bounded rounds and incur a minor
increased query hops. The convergent speed and the
average movements of objects are almost independent of
the network size. When the index paths become longer, the
availability is improved by the replication method. In
summary, the platform provides applications with various
choices among the search hops, the storage utilization, and
the availability of indexes to meet specific requirements.

7 CONCLUSION

To provide various types of query for intelligent applica-
tions on the Knowledge Grid, this paper presents a scalable
platform IMAGINE-P2P that uses a semantic overlay to
support distributed indexing services on a structured DHT
P2P overlay. We demonstrate how a distributed trie index
can be deployed to support path queries on key strings. It
can scale well with the change of the size of network and
the number of key. The load-balancing method can relieve
uneven load distribution. It can efficiently improve the
system utilization and reduce the query latency without
using any global load information. The load-balancing
method is independent of index structures and the network
size. The replication method ensures longer indexing paths
with higher availability. Experiments show that the plat-
form is capable of making trade-offs among search hops,
message cost, storage utilization, and index availability and,
thus, scaling well in dynamic, large-scale environments.

Ongoing work includes studies of relieving query hot-
spots of trie index and deploying other tree-like index
structures on the semantic overlay. Further, based on
IMAGINE-P2P, we are developing indexes with richer
semantics to support intelligent clustering of resources
within the Knowledge Grid [40].

ACKNOWLEDGMENTS

This work was supported by the National Basic Research

Program (973 project no. 2003CB317001) and the National

Science Foundation of China (Grants 60273020 and

70271007).

REFERENCES

[1] K. Aberer, “P-Grid: A Self-Organizing Access Structure for P2P
Information Systems,” Proc. Ninth Int’l Conf. Cooperative Informa-
tion Systems, vol. 2172, pp. 179-194, 2001.

[2] W. Litwin, M.A. Neimat, and D. Schneider, “LH*—A Scalable
Distributed Data Structure,” ACM Trans. Database Systems, vol. 21,
no. 4, pp. 480-525, 1996.

[3] H. Balakrishnan, M. Frans Kaashoek, D. Karger, R. Morris, and I.
Stoica, “Looking Up Data in P2P Systems,” Comm. ACM, vol. 46,
no. 2, pp. 43-48, 2003.

[4] A. Crespo and H. Garcia-Molina, “Semantic Overlay Networks for
P2P Systems,” technical reports, http://www-db.stanford.edu/
~crespo/publications/, 2003.

[5] A. Crespo and H. Garcia-Molina, “Routing Indices for Peer-to-
Peer Systems,” Proc. 28th Int’l Conf. Distributed Computing Systems,
pp. 23-32, July 2002.

[6] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasundaram,
“Querying Peer-to-Peer Networks Using P-Trees,” Proc. Seventh
Int’l Workshop Web and Databases: Colocated with ACM SIGMOD/
PODS2004, pp. 25-30, 2004.

[7] F. Dabek, M. Frans Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-Area Cooperative Storage with CFS,” Proc. 18th ACM
Symp. Operating Systems Principles (SOSP’ 01), pp. 202-215, Oct.
2001.

[8] S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi, “Efficient
Broadcast in Structured P2P Networks,” Proc. Int’l Workshop Peer-
to-Peer Systems (IPTPS), pp. 304-314, 2003.

[9] M.J. Freedman and R. Vingralek, “Efficient Peer-to-Peer Lookup
Based on a Distributed Trie,” Proc. Int’l Workshop Peer-to-Peer
Systems (IPTPS), pp. 66-75, Mar. 2002.

[10] P. Ganesan, M. Bawa, and H. Garcia-Molina, “Online Balancing of
Range-Partitioned Data with Applications to Peer-to-Peer Sys-
tems,” Proc. Very Large Data Bases Conf., pp. 444-455, 2004.

[11] L. Garcés, P.A. Felber, E.W. Biersack, G. Urvoy-Keller, and K.W.
Ross, “Data Indexing in Peer-to-Peer DHT Networks,” Proc. 24th
Int’l Conf. Distributed Computing Systems, pp. 200-208, Mar. 2004.

[12] B. Gedik and L. Liu, “PeerCQ: A Decentralized and Self-
Configuring Peer-to-Peer Information Monitoring System,” Proc.
23rd Int’l Conf. Distributed Computing Systems, pp. 490-499, May
2003.

[13] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I.
Stoica, “Load Balancing in Dynamic Structured P2P Systems,”
Proc. IEEE INFOCOM Conf., vol. 4, pp. 2253-2262, Mar. 2004.

[14] M. Harren and J.M. Hellerstein, “Complex Queries in DHT-Based
Peer-to-Peer Networks,” Proc. Int’l Workshop Peer-to-Peer Systems
(IPTPS), pp. 242-259, Mar. 2002.

[15] N.J.A. Harvey, M. Jones, S. Saroiu, M. Theimer, and A. Wolman,
“SkipNet: A Scalable Overlay Network with Practical Locality
Properties,” Proc. Fourth USENIX Symp. Internet Technologies and
Systems (USITS ’03), pp. 113-126, Mar. 2003.

[16] M.F. Kaashoek and D.R. Karger, “Koorde: A Simple Degree-
Optimal Distributed Hash Table,” Proc. Int’l Workshop Peer-to-Peer
Systems (IPTPS), F. Kaashoek and I. Stoica, eds., pp. 98-107, 2003.

[17] A. Kementsietsidis, M. Arenas, and R.J. Miller, “Mapping Data in
Peer to Peer Systems: Semantics and Algorithmic Issues,” Proc.
ACM SIGMOD Conf., pp. 325-336, June 2003.

[18] D.E. Knuth, The Art of Computer Programming, vol. 3: Sorting and
Searching, second ed. Addison-Wesley, 1973.

[19] A. Kothari, D. Agrawal, A. Gupta, and S. Suri, “Range
Addressable Network: A P2P Cache Architecture for Data
Ranges,” Proc. Third Int’l Conf. Peer-to-Peer Computing, pp. 14-22,
Sept. 2003.

[20] B. Kröll and P. Widmayer, “Distributing a Search Tree Among a
Growing Number of Processors,” ACM SIGMOD Record, vol. 23,
no. 2, pp. 265-276, June 1994.

[21] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, D.
Geels, R. Gummadi, S. Rhea, H. Weatherspoon, W. Weimer, C.
Wells, and B. Zhao, “OceanStore: An Architecture for Global-Scale
Persistent Storage,” Proc. Int’l Conf. Architectural Support for
Programming Languages and Operating Systems, pp. 190-201, Nov.
2000.

[22] G. Li, “Project JXTA: A Technology Overview,” Sun Microsys-
tems, Inc., http://www.jxta.org, 2002.

[23] W. Litwin, M. Neimat, and D.A Schneider, “RP*: A Family of
Order Preserving Scalable Distributed Data Structures,” Proc. 20th
Int’l Conf. Very Large Data Bases (VLDB94), pp. 342-353, Sept. 1994.

[24] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and
Replication in Unstructured Peer-to-Peer Networks,” Proc. 16th
Int’l Conf. Supercomputing, pp. 84-95, June 2002.

[25] X. Qian and Q. Yang, “Load Balancing on Generalized Hypercube
and Mesh Multiprocessors with LAL,” Proc. 11th Int’l Conf.
Distributed Computing System, pp. 402-409, May 1991.

[26] A. Rao, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load Balancing in Structured P2P System,” Proc. Int’l Workshop
Peer-to-Peer Systems (IPTPS), F. Kaashoek and I. Stoica, eds.,
pp. 119-128, 2003.

[27] A. Rowstron and P. Druschel, “Storage Management and Caching
in PAST, A Large-Scale, Persistent Peer-to-Peer Storage Utility,”
ACM SIGOPS Operating Systems Rev., vol. 35, no. 5, pp. 188-201,
2001.

[28] H.T. Shen, Y. Shu, and B. Yu, “Efficient Semantic-Based Content
Search in P2P Network,” IEEE Trans. Knowledge and Data Eng.,
vol. 16, no. 7, pp. 813-826, Aug. 2004.

ZHUGE ET AL.: A SCALABLE P2P PLATFORM FOR THE KNOWLEDGE GRID 1735

[29] M. Singhal, “Deadlock Detection in Distributed Systems,”
Computer, vol. 22, no. 11, pp. 37-48, Nov. 1989.

[30] I. Stoica, R. Morris, D. Karger, M.F. Kaashoek, and H. Balakrish-
nan, “Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM Conf., pp. 149-160, Aug.
2001.

[31] S. Voulgaris, A. Kermarrec, L. Massoulié, and M.V. Steen,
“Exploiting Semantic Proximity in Peer-to-Peer Content Search-
ing,” Proc. 10th IEEE Int’l Workshop Future Trends of Distributed
Computing Systems, pp. 238-243, May 2004.

[32] C. Xu, B. Monien, R. Lüling, and F.C.M. Lau, “Nearest Neighbor
Algorithms for Load Balancing in Parallel Computers,” Con-
currency: Practice and Experience, vol. 7, no. 7, pp. 707-736, 1995.

[33] C. Xu and F.C.M. Lau, “Iterative Dynamic Load Balancing in
Multicomputers,” J. Operational Research Soc., vol. 45, no. 7, pp. 786-
796, 1994.

[34] J. Xu, A. Kumar, and X. Yu, “On the Fundamental Tradeoffs
between Routing Table Size and Network Diameter in Peer-to-
Peer Networks,” IEEE J. Selected Areas in Comm., vol. 22, no. 1,
pp. 151-163, 2004.

[35] B. Yang and H. Garcia-Molina, “Improving Search in Peer-to-Peer
Networks,” Proc. 28th Int’l Conf. Distributed Computing Systems,
pp. 5-14, July 2002.

[36] B. Yang and H. Garcia-Molina, “Designing a Super-Peer Net-
work,” Proc. Int’l Conf. Data Eng. (ICDE), pp. 49-63, Mar. 2003.

[37] B.Y. Zhao, H. Ling, J. Stribling, S.C. Rhea, A.D. Joseph, J.D.
Kubiatowicz, “Tapestry: A Resilient Global-Scale Overlay for
Service Deployment,” IEEE J. Selected Areas in Comm., vol. 22, no. 1,
pp. 41-53, 2004.

[38] Y. Zhu, H. Wang, and Y. Hu, “Integrating Semantics-Based Access
Mechanisms with P2P File Systems,” Proc. Third Int’l Conf. Peer-to-
Peer Computing, pp. 118-125, Sept. 2003.

[39] H. Zhuge, “China’s E-Science Knowledge Grid Environment,”
IEEE Intelligent System, vol. 19, no. 1, pp. 13-17, 2004.

[40] H. Zhuge, The Knowledge Grid. World Scientific, 2004.
[41] H. Zhuge, “The Future Interconnection Environment,” Computer,

vol. 38, no. 4, pp. 27-33, Apr. 2005.

Hai Zhuge is the chief scientist of the China
Semantic Grid project funded by the National
Basic Research Program of China. He is a
professor and the director of the Key Lab of
Intelligent Information Processing at the
Institute of Computing Technology in Chinese
Academy of Sciences, and the founder of
the China Knowledge Grid Research Group
(http://kg.ict.ac.cn), which employs more than
30 young researchers. He presented more

than 10 keynotes at international conferences. He was the cochair
of the Second International Workshop on Knowledge Grid and Grid
Intelligence, the program cochair of the Fourth International
Conference on Grid and Cooperative Computing, and the cochair
of the First International Conference on Semantics, Knowledge, and
Grid. He organized several journal special issues on knowledge
grid and semantic grid. He is serving as the area editor of the
Journal of Systems and Software, the associate editor of Future
Generation Computer Systems, the area editor of the Journal of
Computer Science and Technology, and the editorial member of
the Information and Management and the Electronic Commerce
Research and Applications. His major research interest is the
model, theory, and methodology on the future interconnection
environment. His monograph The Knowledge Grid is the first book
in the area, and received the 2005 Top Award of SONY Excellent
Research. He is the author of more than 90 papers that appeared
mainly in leading international journals such as Communications of
the ACM, Computer, IEEE Transactions on Knowledge and Data
Engineering, IEEE Intelligent Systems, IEEE Computing in Science
and Engineering, and IEEE Transactions on Systems, Man, and
Cybernetics. One of them was among the top 1 percent of highly
cited papers in the area according to ISI Essential Science
Indicator. He is a senior member of the IEEE and a member of
the ACM. He was among the top scholars in systems and software
engineering area (1999-2003) according to the assessment report
published in the Journal of Systems and Software.

Xiaoping Sun is a PhD student in the China
Knowledge Grid Research Group at the Institute
of Computing Technology at the Chinese Acad-
emy of Sciences. His research interests include
peer-to-peer computing, grid computing, and
future networking techniques. He has published
three papers in international journals.

Jie Liu is a PhD student in the China Knowledge
Grid Research Group at the Institute of Comput-
ing Technology at the Chinese Academy of
Sciences. Her research interests are P2P
computing and semantic heterogeneous data
integration. She has published 14 papers in
international journals and conferences.

Erlin Yao is a PhD student in the China
Knowledge Grid Research Group at the Institute
of Computing Technology at the Chinese Acad-
emy of Sciences. His current research interests
include the theory and formalization on the
knowledge grid. He has published three papers
in international journals.

Xue Chen is a PhD student in the China
Knowledge Grid Research Group at the
Institute of Computing Technology at the
Chinese Academy of Sciences. Her research
interests include peer-to-peer systems and
self-organized networks. She has published
three papers in international journals.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

1736 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 17, NO. 12, DECEMBER 2005

Appendix: Analysis of Constructing Comparison-Based Structured P2P
Overlays

Definition 1. Assume that for a given finite key set S = {k1, k2, …, kn}, all the keys in the

set S are unique, π is a linear ordering relation defined on S. For a permutation

V = {kp1, kp2, …, kpn}, kpi∈S, if for every pair of kpi and kpi+1, kpi π kpi+1, then V is a sorted

permutation of the set S under the linear ordering relation π.

Reference [18] gives the lower bound of the sorting in terms of the comparison times,

where one comparison can determine the partial order of two keys.

Theorem 1 [18]. In the worst case, to achieve a sorted permutation V of a finite set S by

comparison of keys, the lower bound of comparisons among keys is O(n log2 n), n = |S|.

I is a predefined ID set. In a P2P network N = {id1, id2, …, idn}, each node is uniquely

identified by an idi ∈ I and maintains a non-null set of neighbor nodes

Hi = {idp1, idp2,…, idpk}, idpi ∈ N. The relationship between the IDs of a node and its

neighbors is represented as Rh. Note that the inverse relation ~Rh also exists in the

overlay. Then, an abstracted definition of a P2P overlay network is given as follows.

Definition 2. A P2P overlay network P is a tuple <N, Rh>, where N = {id1, id2, …, idn} is

the set of IDs of nodes in the network and Rh is a binary relation that defines the relation

between the IDs of a node and its neighbors, that is, if idj is a neighbor of idi, then

idi Rh idj. However idi Rh idj does not necessarily mean that idi must have idj as a

neighbor.

Definition 2 makes several assumptions: First, all the nodes have the same Rh to form

a neighbor node set. Second, all the nodes are connected through neighbors, though if the

graph is disconnected, we can view the separate parts as different networks. And third, a

node can communicate directly only with its neighbors. The definition implies that Rh

determines the route on the overlay. In an overlay network without a central directory, the

messages between nodes have to be sent along a path called a route.

Definition 3. A route path on an overlay network P = <N, Rh> is a finite path, either

idp1, idp2, …, idpn from idp1 to idpn such that idpi Rh idpi+1 and ji,∀ , idpi idpj, or idp1, idp2,

…, idpn from idp1 to idpn such that idpi
~Rh idpi+1 , ji,∀ , idpi idpj.

Definition 4. A well-structured P2P overlay network P=<N, Rh> is an overlay such that

for any two idi and idj (i j), there must be a deterministic and unique route from idi to idj

and vice versa through Rh. Otherwise, it is an ill-structured overlay since unless the route

is unique, routing will be uncertain.

Theorem 2. In a well-structured overlay P=<N, Rh>, Rh should be reflexive and

asymmetric if there is to be a deterministic and unique route between any two nodes.

Proof. Clearly, for all idi, we have idi Rh idi. If idi Rh idj and idj Rh idi, i j, there is always

a looped routing path that ends up with the starting node, which breaks the uniqueness

and incurs uncertainty to a routing path, that is, P is an ill-structured overlay. Thus in a

well-structured P2P overlay, if idi Rh idj and idj Rh id, idi = idj. So Rh is asymmetric.

Since no node will be able to reach a node with a smaller ID according to the partial

relation Rh, either use the inverse relation ~Rh or add a short cut from the largest ID to the

smallest ID. This does not affect the linear ordering relation requirement. This model

shows that to build a structured P2P overlay, the neighbor relationship should be

reflexive and asymmetric. Now we give a definition of mapping a data object to a node

by the key and the node identification.

Definition 5. For each ki ∈ K there must be a unique idj ∈ N that corresponds to each ki.

The tuple (ki, idj) is called the location relation Rd. If D =K ∪ N, Rd is a relation on D.

Definition 6. Deterministically mapping a ki ∈ K to an idj ∈ N is to find such an idj that

ki Rd idj and there is no idm that follows kj Rd idm and idm Rh idj.

Definition 6 ensures that a ki is uniquely mapped to an idj. For simplicity, we assume

that each data object di has one unique key ki ∈ K. This definition shows that ki and idi are

selected from the same domain so that they can be compared with each other and that ki

can equal to idj.

Lemma 1. If a comparison R is to determine that which one is larger than or equal to the

other for two elements, then according to the definition of the linear ordering relation, if

R can distinguish every two elements of a set S, R must be a linear ordering relation on

the finite set S.

Theorem 3. Rd must be a linear ordering relation on the set D.

Proof. From Definition 5 the only way to determine the unique location is the

comparison. From Lemma 1, if Rd is not a linear ordering relation on D, then there must

be a ki and an idi that cannot be determined by the relation Rd, which means that the

location of ki cannot be determined. Thus Rd must be a linear ordering relation.

Corollary 1. To build a well structured P2P overlay P = <N, Rh>, where each key can be

deterministically mapped onto a unique node, Rh must be a linear ordering relation on the

set N.

Proof. Since Rd is a linear ordering relation on D and N ⊆ D, it is also a linear ordering

relation on N, i.e. Rd is a reflexive and asymmetric relation on N. From Theorem 2, Rd can

be used to form a well-structured overlay network, i.e. Rd can be an Rh. If Rh is the only

relation used to construct <N, Rh > and Rh is also used to define the deterministic map

between keys and nodes, according to Theorem 3, Rh must be a linear ordering relation

on N, that is Rh = Rd

Theorem 4. To build a well structured P2P overlay P = <N, Rh>, where each key can be

deterministically mapped onto a node, in the worst case, at least O(n log2 n) comparisons

are needed, n = |N|.

Proof. From Corollary 1, to build such a P, Rh must be a linear ordering relation on N.

Then, the whole ids will form a sequence L satisfying idp1 Rh idp2 Rh idp3…Rh idpn. Assume

that there are only two adjacent nodes vi and vj that break the rule idi Rh idj. Since Rh is

asymmetric and transitive, in the sequence L, if idi Rh idj does not hold, the only possible

permutation of idi and idj is that idi is in the position right to the idj, However, according

to Definition 2, since idi has the neighbor idj, then idi Rh idj must hold. Thus, if two

adjacent nodes cannot follow idi Rh idj, then Rh cannot be a linear ordering relation and

adjustment is required. Now considering a well-structured P = <N, Rh> and Rh is a linear

order relation on the set N, that is, it already has a right sequence L, if a new node idk is to

join the overlay, then <N, Rh> become <N’, Rh’>, and Rh’ may not be a linear ordering

relation on N’. In this case, idk has to be compared to the IDs in N’ to find its right

location in Rh to make Rh’ a linear ordering relation on N’. This process is exactly the

same as the sorting process on N’. Thus, whatever method used, it takes the lower bound

of O(log2 n) comparisons in the worst case as in Theorem 1 for each new node, and for

all n new nodes, it will be O(n log2 n).

